题目信息
In the sequence of nonzero numbers $${t}_{1}$$, $${t}_{2}$$, $${t}_{3}$$, ..., $${t}_{n}$$, ..., $${t}_{n+1}=\frac{{t}_{n}}{2}$$ for all positive integers n. What is the value of $${t}_{5}$$?
(1) $${t}_{3}=\frac{1}{4}$$
(2) $${t}_{1}-{t}_{5}=\frac{15}{16}$$
(1) $${t}_{3}=\frac{1}{4}$$
(2) $${t}_{1}-{t}_{5}=\frac{15}{16}$$
A:Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
B:Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
C:BOTH statement TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
D:EACH statement ALONE is sufficient.
E:Statements (1) and (2) TOGETHER are NOT sufficient.
参考答案及共享解析

共享解析来源为网络权威资源、GMAT高分考生等; 如有疑问,欢迎在评论区提问与讨论
本题耗时:
已选答案:
正确答案:
D:EACH statement ALONE is sufficient.
权威答案解析正在整理中,即将上线。


题目来源