题目信息
The difference 942 − 249 is a positive multiple of 7. If a, b, and c are nonzero digits, how many 3-digit numbers abc are possible such that the difference abc − cba is a positive multiple of 7 ?
A:142
B:71
C:99
D:20
E:18
参考答案及共享解析
共享解析来源为网络权威资源、GMAT高分考生等; 如有疑问,欢迎在评论区提问与讨论
正确答案: E:18
Arithmetic Place value
Since abc is numerically equal to 100a + 10b + c and cba is numerically equal to 100c + 10b + a, it follows that abc − cba is numerically equal to (100 − 1)a + (10 − 10)b + (1 − 100)c = 99(a − c). Because 7 and 99 are relatively prime, 99(a − c) will be divisible by 7 if and only if a − c is divisible by 7. This leads to two choices for the nonzero digits a and c, namely a = 9, c = 2 and a = 8, c = 1. For each of these two choices for a and c, b can be any one of the nine nonzero digits. Therefore, there is a total of 2(9) = 18 possible 3-digit numbers abc.
The correct answer is E.
笔记

登录后可添加笔记, / 注册

加入收藏
在线答疑
题目来源
Hi,欢迎来到PAPA GMAT!
课程推荐
备考攻略
Copyright © 2015-2023 上海彼伴网络科技有限公司 沪ICP备2023023608号-2

网站维护公告

因版权方要求,我站部分题库资源将暂停访问,由此给大家带来的不便我们深表歉意。具体恢复时间将另行通知。
请关注趴趴GMAT公众号【趴趴GMAT商科留学】获取最新资讯和其他备考干货;免费集训营和权威公开课亦将循环开设,欢迎各位同学积极报名参加,感谢各位同学的理解和支持。
趴趴GMAT
2019.10.14
确认