题目信息
For each positive integer k, let a k = . Is the product a1a2 … an an integer?
A:Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
B:Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
C:BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
D:EACH statement ALONE is sufficient.
E:Statements (1) and (2) TOGETHER are NOT sufficient.
参考答案及共享解析
共享解析来源为网络权威资源、GMAT高分考生等; 如有疑问,欢迎在评论区提问与讨论
正确答案: B:Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
Algebra Series and sequences
Since , it follows that the product can be written as
. Therefore, the product a1a2 … an is an integer if and only if is an integer, or if and only if n is an even integer.
 If n = 2, then n + 1 = 3 is a multiple of 3 and the product is , which is an integer. However, if n = 5, then n + 1 = 6 is a multiple of 3 and the product is , which is not an integer; NOT sufficient.  If n is a multiple of 2, then by the remarks above it follows that the product is an integer; SUFFICIENT.
The correct answer is B;statement 2 alone is sufficient.
笔记

登录后可添加笔记, / 注册

加入收藏
在线答疑
题目来源
Hi,欢迎来到PAPA GMAT!
课程推荐
备考攻略
Copyright © 2015-2023 上海彼伴网络科技有限公司 沪ICP备2023023608号-2

网站维护公告

因版权方要求,我站部分题库资源将暂停访问,由此给大家带来的不便我们深表歉意。具体恢复时间将另行通知。
请关注趴趴GMAT公众号【趴趴GMAT商科留学】获取最新资讯和其他备考干货;免费集训营和权威公开课亦将循环开设,欢迎各位同学积极报名参加,感谢各位同学的理解和支持。
趴趴GMAT
2019.10.14
确认