题目信息
What is the number of integers that are common to both set S and set T ?
A:Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
B:Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
C:BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
D:EACH statement ALONE is sufficient.
E:Statements (1) and (2) TOGETHER are NOT sufficient.
参考答案及共享解析
共享解析来源为网络权威资源、GMAT高分考生等; 如有疑问,欢迎在评论区提问与讨论
正确答案: C:BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
Arithmetic Sets
In standard notation, and represent the intersection and union, respectively, of sets S and T, and |S| represents the number of elements in a set S. Determine .
 It is given that |S| = 7 and |T| = 6. If, for example, S = {1, 2, 3, 4, 5, 6, 7} and T = {1, 2, 3, 4, 5, 6}, then  = 6. However, if S = {1, 2, 3, 4, 5, 6, 7,} and T = {11, 12, 13, 14, 15, 16}, then  = 0; NOT sufficient.  It is given that  = 10. If, for example, S = {1, 2, 3, 4, 5, 6, 7} and T = {1, 2, 3, 8, 9, 10}, then  = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},  = 10, and  = 3. However, if S = {1, 2, 3, 4, 5, 6, 7} and T = {11, 12, 13}, then  = {1, 2, 3, 4, 5, 6, 7, 11, 12, 13},  = 10, and  = 0; NOT sufficient.
Taking (1) and (2) together along with the general addition rule for two sets A and B
( = |A| + |B| – ) applied to sets S and T gives 10 = 7 + 6 – , from which can be determined.
The correct answer is C;both statements together are sufficient.
笔记

登录后可添加笔记, / 注册

加入收藏
在线答疑
题目来源
Hi,欢迎来到PAPA GMAT!
课程推荐
备考攻略
Copyright © 2015-2023 上海彼伴网络科技有限公司 沪ICP备2023023608号-2

网站维护公告

因版权方要求,我站部分题库资源将暂停访问,由此给大家带来的不便我们深表歉意。具体恢复时间将另行通知。
请关注趴趴GMAT公众号【趴趴GMAT商科留学】获取最新资讯和其他备考干货;免费集训营和权威公开课亦将循环开设,欢迎各位同学积极报名参加,感谢各位同学的理解和支持。
趴趴GMAT
2019.10.14
确认