题目信息
Among a group of 2,500 people, 35 percent invest in municipal bonds, 18 percent invest in oil stocks, and 7 percent invest in both municipal bonds and oil stocks. If 1 person is to be randomly selected from the 2,500 people, what is the probability that the person selected will be one who invests in municipal bonds but NOT in oil stocks?
A:$$\frac{9}{50}$$
B:$$\frac{7}{25}$$
C:$$\frac{7}{20}$$
D:$$\frac{21}{50}$$
E:$$\frac{27}{50}$$
参考答案及共享解析

共享解析来源为网络权威资源、GMAT高分考生等; 如有疑问,欢迎在评论区提问与讨论
本题耗时:
已选答案:
正确答案:
B:$$\frac{7}{25}$$
*考点:韦恩图
*解析:
在2500人的团体中,35%投资于市政债券,18%投资于石油股票,7%投资于市政债券和石油股票。
根据所附的维恩图,我们必须找到阴影部分的人数。
= 35%-7%= 28%
因此,B: 概率= 0.28 = 7/25


题目来源