题目信息

In most earthquakes the Earth's crust cracks like porcelain, Stress builds up until a fracture forms at a line depth of a few kilometers and the crust slips to relieve the stress. Some earthquakes, however, take place hundreds of kilometers down in the Earth's mantle, where high pressure makes rock so ductile that it flows instead of cracking, even under stress severe enough to deform it like putty. How can there be earthquakes at such depths?


That such deep events do occur has been accepted only since 1927. when the seismologist Kiyoo Wadati convincingly demonstrated their existence. Instead of comparing the arrival times of seismic waves at different locations, as earlier researchers had done, Wadati relied on a time difference between the arrival of primary(P) waves and the slower secondary(S) waves. Because P and S waves travel at different but fairly constant speeds, the interval between their arrivals increases in proportion to the distance from the earthquake focus, or initial rupture point.


For most earthquakes, wadati discovered, the interval was quite short near the epicenter; the point on the surface where shaking is strongest. For a few events, however, the delay was long even at the epicenter. Wadati saw a similar pattern when he analyzed data on the intensity of shaking. Most earthquakes had a small area of intense shaking, which weakened rapidly with increasing distance from the epicenter. but others were characterized by a lower peak intensity, felt over a broader area. Both the P-S intervals and the intensity patterns suggested two kinds of earthquakes: the more common shallow events, in which the focus lay just under the epicenter, and deep events, with a focus several hundred kilometers down.


The question remained: how can such quakes occur, given that mantle rock at a depth of more than 50 kilometers is too ductile to store enough stress to fracture? Wadati's work suggested that deep events occur in areas (now called Wadati-Benioff zones) where one crustal plate is forced under another and descends into the mantle. The descending rock is substantially cooler than the surrounding mantle and hence is less ductile and much more liable to fracture.

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • Information presented in the passage suggests that, compared with seismic activity at the epicenter of a shallow event, seismic activity at the epicenter of a deep event is characterized by

    A:shorter P-S intervals and higher peak intensity
    B:shorter P-S intervals and lower peak intensity
    C:longer P-S intervals and similar peak intensity
    D:longer P-S intervals and higher peak intensity
    E:longer P-S intervals and lower peak intensity.
    参考答案及共享解析
    共享解析来源为网络权威资源、GMAT高分考生等; 如有疑问,欢迎在评论区提问与讨论
    正确答案: E:longer P-S intervals and lower peak intensity.

    题目中要有两处定位

    intervals的定位:the interval between their arrivals increases in proportion to the distance from the earthquake focus, or initial rupture point.随着震中的远离,interval会增加

    peak intensity的定位: Most earthquakes had a small area of intense shaking, which weakened rapidly with increasing distance from the epicenter, but others were characterized by a lower peak intensity, felt over a broader area. Both the P-S intervals and the intensity patterns suggested two kinds of earthquakes: the more common shallow events, in which the focus lay just under the epicenter, and deep events, with a focus several hundred kilometers down.

    随着离震中的距离越远震感减弱;但有些(就是deep event)就是lower peak intensity,但是波及面积大。

    综合以上,选E

    笔记

    登录后可添加笔记, / 注册

    加入收藏
    在线答疑
    题目来源
    GWD
    Hi,欢迎来到PAPA GMAT!
    课程推荐
    备考攻略
    Copyright © 2015-2023 上海彼伴网络科技有限公司 沪ICP备2023023608号-2

    网站维护公告

    因版权方要求,我站部分题库资源将暂停访问,由此给大家带来的不便我们深表歉意。具体恢复时间将另行通知。
    请关注趴趴GMAT公众号【趴趴GMAT商科留学】获取最新资讯和其他备考干货;免费集训营和权威公开课亦将循环开设,欢迎各位同学积极报名参加,感谢各位同学的理解和支持。
    趴趴GMAT
    2019.10.14
    确认